Prof. Dr. Marc Erhardt

The incidence of foodborne outbreaks caused by Enterobacteriaceae, including Salmonella enterica, remains substantial and constitutes a significant socioeconomic burden in Europe and worldwide. This is evidenced by the inclusion of Salmonella in the list of priority pathogens, which was recently published by the World Health Organization (WHO) to highlight urgent public health needs.
Salmonella enterica are motile, intracellular pathogens that employ multiple virulence factors, including flagella and needle-like injectisome devices, to efficiently colonize the host. The flagellum and injectisome are complex self-assembling nanomachines and their function relies on protein export via a conserved type-III secretion system. However, the molecular details of protein secretion via the type-III export apparatus remains largely obscure. In addition, complex regulatory mechanisms control the biosynthesis of the flagellum and virulence-related injectisome and substantial transcriptional cross talk between the various virulence factors exists that is poorly understood.
The research of the Erhardt Lab concerning the molecular mechanisms of these fascinating nanomachines, in particular of the self-assembling bacterial flagellum, allows them to address fundamental research questions in microbiology and bacterial physiology, such as:
- What are the molecular mechanisms of flagellum assembly and of the type-III protein secretion process?
- What is the role of flagella and bacterial motility in the infection process?
- How does Salmonella regulate its gene expression profile to adapt to diverse and hostile environments inside the host?
Elucidating the molecular mechanisms of the bacterial type-III protein secretion system and the life-style transition from the motile, planktonic state in the intestinal lumen to intracellular growth after invasion of the epithelium will be essential for a detailed understanding of the events required for the commitment of the bacteria to invasive diseases. Importantly, an in-depth knowledge of these mechanisms could be used to design rational strategies that counter the spread of gastrointestinal infections – urgently needed at a time when antibiotic resistance is increasing.
- Bacterial genetics
- Fluorescent microscopy
- TIRF microscopy
- STED superresolution microscopy
- Microfluidics
- Single cell analyses
Current position
| 2023 - present | Full professor of Molecular Microbiology at the Humboldt-Universität zu Berlin (DE) |
| 2021 - present | Max Planck Fellow at the Max Planck Unit for the Science of Pathogens, Berlin (DE) |
Positions held
| 2017 - 2023 | Associate professor of Bacterial Physiology at the Humboldt-Universität zu Berlin (DE) |
| 2013 - 2017 | Principal Investigator of an independent present junior research group at the Helmholtz Centre for Infection Research, Braunschweig (DE) |
| 2011 - 2012 | Postdoctoral Researcher at the Université de Fribourg (CH) |
Academic Education
| 2007 - 2011 | Doctoral Degree in Microbiology at the Universität Konstanz (DE); Universität Heidelberg (DE); University of Utah (US); Université de Fribourg (CH) |
| 2004 - 2006 | Master’s Degree in Microbiology and Biochemistry at the Universität Konstanz (DE); University of Utah (US) |
| 2002 - 2004 | Bachelor’s Degree in Biology at the Universität Ulm (DE) |
Honors/Awards/Fellowships
| 2020 | ERC Consolidator Grant |
| 2018 | Forschungspreis der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM) |
| 2013 - 2017 | Helmholtz Young Investigator grant |
| 2012 - 2013 | Marie Curie International Incoming Fellowship |
| 2012 | Elisabeth-Gateff-Prize of the Gesellschaft für Genetik |
| 2012 | EMBO Long-Term Fellowship - declined |
| 2007 - 2010 | Boehringer Ingelheim Fonds Ph.D. fellowship |
| 2010 | DeLill Nasser Award of the Genetics Society of America |
| 2005 - 2007 | Studienstiftung des deutschen Volkes |
DFG-funded projects
| 2016 - present | Research Grant - 'Quality management in assembly of bacterial type III secretion systems – a comparative analysis of the construction of flagella and injectisomes' |
| 2016 - 2021 | Research Grant - 'Function of the type-III secretion system ATPase complex in protein export of the bacterial flagellum' |
| 2019 | Major Research Instrumentation - 'Superresolution stimulated emission-depletion (STED) microscope' |
Selected activities
| 2023 - present | Managing director of the Institute of Biology, Humboldt-Universität zu Berlin (DE) |
| 2022 - present | Instructor of the Advanced Bacterial Genetics (ABG) Course at Cold Spring Harbor Laboratory (USA) |
| 2021 - present | Elected member of the steering committee of the Institute of Biology, Humboldt-Universität zu Berlin (DE) |
| 2021 - present | Member of the review committee of the Faculty of Life Sciences for special merit awards, Humboldt-Universität zu Berlin (DE) |
| 2022 | Organizer of the 4th VAAM discussion meeting 'Microbial Cell Biology', Berlin (DE) |
| 2022 - 2023 | Deputy director of the Institute of Biology, Humboldt-Universität zu Berlin (DE) |
| 2022 - 2023 | Head of the examination committee of the Institute of Biology, Humboldt-Universität zu Berlin (DE) |
| 2017 - 2020 | Scientific Advisory Board member, T3S Technologies, Inc., 36 S. Wasatch Drive, SMBB Box 3, Salt Lake City, Utah 84112, USA |